A bi-Hamiltonian nature of the Gaudin algebras

نویسندگان

چکیده

Let q be a Lie algebra over field k and p,p˜∈k[t] two different normalised polynomials of degree n⩾2. As vector spaces, both quotient algebras q[t]/(p) q[t]/(p˜) can identified with W=q⋅1⊕qt¯⊕…⊕qt¯n−1. If deg⁡(p−p˜)⩽1, then the brackets [,]p, [,]p˜ induced on W by p p˜, respectively, are compatible. Making use Lenard–Magri scheme, we construct subalgebra Z=Z(p,p˜)⊂S(W)q⋅1 such that {Z,Z}p={Z,Z}p˜=0. tr.degS(q)q=indq has codim–2 property, tr.degZ takes maximal possible value, which is n−12dim⁡q+n+12indq. q=g semisimple, Z contains Hamiltonians suitably chosen Gaudin model. Furthermore, if p˜ do not have common roots, there C⊂U(g⊕n) Z=gr(C), up to certain identification. In non-reductive case, obtain completely integrable generalisation models. For wide class algebras, extends reductive setting, Z(p,p+t) coincides image Poisson-commutative Z(qˆ,t)=S(tq[t])q[t−1] under map ψp:S(q[t])→S(W), providing p(0)≠0.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quadratic Algebras Related to the Bi - Hamiltonian

We prove the conjectures on dimensions and characters of some quadratic algebras stated by B.L.Feigin. It turns out that these algebras are naturally isomorphic to the duals of the components of the bi-Hamiltonian operad.

متن کامل

Solutions of the Gaudin Equation and Gaudin Algebras

Three well-known solutions of the Gaudin equation are obtained under a set of standard assumptions. By relaxing one of these assumptions we introduce a class of mutually commuting Hamiltonians based on a different solution of the Gaudin equation. Application of the algebraic Bethe ansatz technique to diagonalize these Hamiltonians reveals a new infinite dimensional complex Lie algebra.

متن کامل

Bi-Hamiltonian nature of the equation u_tx=u_xyu_y-u_yyu_x

We study non-linear integrable partial differential equations naturally arising as bi-Hamiltonian Euler equations related to the looped cotangent Virasoro algebra. This infinite-dimensional Lie algebra (constructed in [16]) is a generalization of the classical Virasoro algebra to the case of two space variables. Two main examples of integrable equations we obtain are quite well known. We show t...

متن کامل

the structure of lie derivations on c*-algebras

نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.

15 صفحه اول

Bi–Hamiltonian manifolds, quasi-bi-Hamiltonian systems and separation variables

We discuss from a bi-Hamiltonian point of view the Hamilton–Jacobi separability of a few dynamical systems. They are shown to admit, in their natural phase space, a quasi–bi– Hamiltonian formulation of Pfaffian type. This property allows us to straightforwardly recover a set of separation variables for the corresponding Hamilton–Jacobi equation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2023

ISSN: ['1857-8365', '1857-8438']

DOI: https://doi.org/10.1016/j.aim.2022.108805