A bi-Hamiltonian nature of the Gaudin algebras
نویسندگان
چکیده
Let q be a Lie algebra over field k and p,p˜∈k[t] two different normalised polynomials of degree n⩾2. As vector spaces, both quotient algebras q[t]/(p) q[t]/(p˜) can identified with W=q⋅1⊕qt¯⊕…⊕qt¯n−1. If deg(p−p˜)⩽1, then the brackets [,]p, [,]p˜ induced on W by p p˜, respectively, are compatible. Making use Lenard–Magri scheme, we construct subalgebra Z=Z(p,p˜)⊂S(W)q⋅1 such that {Z,Z}p={Z,Z}p˜=0. tr.degS(q)q=indq has codim–2 property, tr.degZ takes maximal possible value, which is n−12dimq+n+12indq. q=g semisimple, Z contains Hamiltonians suitably chosen Gaudin model. Furthermore, if p˜ do not have common roots, there C⊂U(g⊕n) Z=gr(C), up to certain identification. In non-reductive case, obtain completely integrable generalisation models. For wide class algebras, extends reductive setting, Z(p,p+t) coincides image Poisson-commutative Z(qˆ,t)=S(tq[t])q[t−1] under map ψp:S(q[t])→S(W), providing p(0)≠0.
منابع مشابه
Quadratic Algebras Related to the Bi - Hamiltonian
We prove the conjectures on dimensions and characters of some quadratic algebras stated by B.L.Feigin. It turns out that these algebras are naturally isomorphic to the duals of the components of the bi-Hamiltonian operad.
متن کاملSolutions of the Gaudin Equation and Gaudin Algebras
Three well-known solutions of the Gaudin equation are obtained under a set of standard assumptions. By relaxing one of these assumptions we introduce a class of mutually commuting Hamiltonians based on a different solution of the Gaudin equation. Application of the algebraic Bethe ansatz technique to diagonalize these Hamiltonians reveals a new infinite dimensional complex Lie algebra.
متن کاملBi-Hamiltonian nature of the equation u_tx=u_xyu_y-u_yyu_x
We study non-linear integrable partial differential equations naturally arising as bi-Hamiltonian Euler equations related to the looped cotangent Virasoro algebra. This infinite-dimensional Lie algebra (constructed in [16]) is a generalization of the classical Virasoro algebra to the case of two space variables. Two main examples of integrable equations we obtain are quite well known. We show t...
متن کاملthe structure of lie derivations on c*-algebras
نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.
15 صفحه اولBi–Hamiltonian manifolds, quasi-bi-Hamiltonian systems and separation variables
We discuss from a bi-Hamiltonian point of view the Hamilton–Jacobi separability of a few dynamical systems. They are shown to admit, in their natural phase space, a quasi–bi– Hamiltonian formulation of Pfaffian type. This property allows us to straightforwardly recover a set of separation variables for the corresponding Hamilton–Jacobi equation.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 2023
ISSN: ['1857-8365', '1857-8438']
DOI: https://doi.org/10.1016/j.aim.2022.108805